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Abstract. Starting from a classical Hamiltonian for nonhomogeneous elastic media, a
procedure is developed for acoustic phonon quantization in resonators as well as linear and
planar waveguides. The formalism is illustrated in an example of acoustic phonon modes in
a buried cylindrical waveguide. The deformation potential Hamiltonian for electron–acoustic
phonon interaction is also obtained.

1. Introduction

During the last decade much effort has been devoted to understanding of influence of
spatial quantization on the vibrational properties of semiconductor heterostructures and
superlattices. While optical phonon confinement has been analysed in great detail [1], it is
only recently that much attention has been focused on the more subtle effects of acoustic
phonon quantization in restricted geometries.

Early works on acoustic phonon properties in superlattices were devoted mainly to the
study of acoustic mode folding [2]. More recently, Tamura and co-workers investigated the
resonant transmission of acoustic wavepackets in superlattices and double-barrier systems
[3]. Kochelap and G̈ulseren [4] have modelled the localization of acoustical modes due to
electron–phonon interactions within a two-dimensional electron gas. Also, in a number of
works the modification of acoustic modes in heterostructures has been studied [5–7] within
the formalism ofclassicalelasticity theory [8, 9].

Recent advances in material growth techniques have resulted in the fabrication of free-
standing nanostructures [11] and have provided the possibility of observation of acoustic
phonon confinement effects. Wybourne and co-workers [12] have presented experimental
evidence of acoustic phonon confinement effects in self-supported thin films. Subsequently,
these experimental findings motivated theoretical investigations on the role of acoustic
phononquantizationin free-standing nanostructures [13–15]. Furthermore, acoustic phonon
modes had been properly quantized in self-supported whiskers [13, 14], dots [13] and slabs
[15], and electron–phonon interactions in such systems have been studied.

To the best of our knowledge, the quantum mechanical treatment of acoustic phonons
has been provided only for free-boundary, homogeneous waveguides and resonators. On
the other hand, semiconductor quantum wells, wires and dots are conventionally grown
embedded in another material. It has been also proposed [7] that a buried quantum wire
could serve as an acoustic fibre in semiconductor acoustoelectronic devices. Thus, proper
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quantization of acoustic phonon modes in buried structures is essential for an accurate
treatment of mesoscopic and coherent phenomena in low-dimensional systems.

In this paper we develop a quantization procedure for acoustic vibrations confined in
linear or planar waveguides as well as resonators. Expressions for the displacement operator
are derived starting from the most general form of the Hamiltonian for an inhomogeneous
elastic medium. The quantization formalism is illustrated by deriving the acoustic phonon
spectrum for a buried cylindrical wire. We also present the resulting deformation potential
Hamiltonian responsible for the electron–phonon interaction.

This paper is organized as follows. In section 2 we obtain general rules for acoustic
phonon quantization in resonators and waveguides. Section 3 deals with application of
the quantization procedure to a buried cylindrical fibre. Finally, we summarize the results
obtained in section 4.

2. Quantization procedure

In section 2.1 we present the procedure for acoustic phonon quantization in resonators;
section 2.2 contains the rule for quantization of phonons confined in one or two dimensions
(acoustic waveguide), and section 2.3 presents the deformation potential Hamiltonian for
acoustic phonons.

2.1. Acoustic phonon quantization in resonators

We consider the quantization of acoustic modes localized in a certain region of elastic
material (resonator). The most general form of the Hamiltonian for an inhomogeneous
elastic medium is given by [9, 10]

H = 1

2

∫
d3R

[
ρ(R)u̇i u̇i + λijkl(R)

∂ui

∂xj

∂uk

∂xl

]
(1)

whereui are components of the displacement vectoru(R, t); alsoρ(R) is a mass density,
andλijkl(R) is the elastic stiffness tensor of the medium.

The corresponding equations of motion take the following form:

ρ(R)üi(R, t) = ∂

∂xj

[
λijkl(R)

∂uk(R, t)

∂xl

]
. (2)

The general solution of equation (2) in the case of localized vibrations can be presented
as a linear combination of normal modeswn(R) which are labelled by a discrete number
n. For the quantization of the elastic vibrations it is convenient to deal with a real (rather
than complex) displacement vectoru(R, t); thus,

u(R, t) =
∑

n

[
cnwn(R) e−iωnt + c∗

nw
∗
n(R) eiωnt

]
. (3)

In order to define unambiguously the coefficientscn and c∗
n in equation (3), the

normalization rule for the modeswn(R, t) should be specified. Since the requirement of
constant energy for confined vibrations implies their mutual orthogonality with the density
ρ(R) as a weight factor [10], the following orthonormality conditions can be imposed:∫

d3R ρ(R)w∗
n(R) · wn′(R) = δn,n′ . (4)

In order to obtain the quantization rules the Hamiltonian (1) must be expressed in
terms of the amplitudes of the modes,cn and c∗

n. Integrating by parts the second term in
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equation (1), we find, with the help of equations (2)–(4), the following representation of the
Hamiltonian:

H =
∑

n

ωn(cnc
∗
n + c∗

ncn). (5)

The classical form (5) for elastic vibrations corresponds to the free-phonon Hamiltonian
Ĥ in the second-quantization representation

Ĥ =
∑

n

h̄ωn

[
b̂n(t)b̂

†
n(t) + 1

2

]
=

∑
n

h̄ωn

2

[
b̂n(t)b̂

†
n(t) + b̂†

n(t)b̂n(t)
]

(6)

where the time-dependent annihilation and creation operators satisfy standard commutation
relations:

b̂n(t)b̂
†
n′(t) − b̂

†
n′(t)b̂n(t) = δn,n′ .

In essence, the quantization procedure amounts to (see, e.g., [16]) comparison of
the classical Hamiltonian of equation (5) with the quantum mechanical Hamiltonian of
equation (6). This comparison leads to the correspondence rule

cn e−iωnt →
√

h̄

2ωn

b̂n(t) c∗
n eiωnt →

√
h̄

2ωn

b̂†
n(t). (7)

Finally, applying the rule (7) to the classical displacement vector inresonatorsgiven
by equation (3), we find, in second-quantization representation,

û(R, t) =
∑

n

√
h̄

2ωn

[
wn(R) b̂n + w∗

n(R) b̂†
n

]
. (8)

For simplicity we have suppressed the time dependence of the operatorsb̂(t) andb̂†(t). The
phonon wavefunctionswn(R) are normalized according to equation (4).

2.2. Phonon quantization in acoustic waveguides

The quantization rules for acoustic waveguides are easily obtained from comparison of
equations (8), (4) for phonons confined in all dimensions with corresponding expressions,
describing the homogeneous case [16]. Introducing the notationR = (r, z) and Q =
(q, qz), we consider (i) planar waveguides homogeneous in the plane with constantz and
(ii) linear waveguides which are homogeneous along thez-direction.

Thus, for linear acoustic waveguides, the operator for the displacement vector is given
by

û(R, t) =
∑
n,qz

√
h̄

2ωnqz

[
wn,qz

(r) b̂n,qz
+ w∗

n,−qz
(r) b̂

†
n,−qz

] eiqzz

√L . (9)

Here L is a normalization length; the phonon frequencyωnqz
and eigenvectorswn,qz

(r)

should be found by solving of the equations of motion (2) with proper boundary condition.
The normalization condition for the eigenvectors is∫

d2r ρ(r)w∗
n,qz

(r) · wn′,qz
(r) = δn,n′ . (10)

In the same fashion, for aplanar waveguide the displacement operator is equal to

û(R, t) =
∑
n,q

√
h̄

2ωnq

[
wn,q(z)b̂n,q + w∗

n,−q(z)b̂
†
n,−q

] eiq·r
√S (11)
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whereS is a normalization area and the eigenvectorswn,q(z) must be normalized according
to the prescription∫

dz ρ(z)w∗
n,q(z) · wn′,q(z) = δn,n′ . (12)

2.3. The deformation potential

Interaction via the deformation potential is usually a dominant mechanism for electron–
acoustic phonon scattering in crystals. The deformation potential Hamiltonian can be written
in a general form as

Ĥdef = 4ac div û(R, t) (13)

where 4ac is an acoustic deformation potential constant, and an implicit form of the
displacement operator̂u is given by equations (8), (9), or (11).

3. The cylindrical waveguide

To illustrate the application of the acoustic phonon quantization procedure described in
the previous section, we consider the example of a linear cylindrical waveguide in an
isotropic medium. Section 3.1 provides the general solution for quantized acoustic modes
in this system; in section 3.2, we investigate the particular case of axisymmetric modes in
more detail. Section 3.3 contains the expression for the quantized deformational potential
Hamiltonian.

3.1. Basic equations

We consider a buried cylindrical waveguide of radiusa occupying the regionr < a. The
inner (outer) region of the waveguide is filled with an isotropic medium characterized
by constant mass densityρ1 (ρ2) and Laḿe coefficientsλ1, µ1 (λ2, µ2) which specify
the elastic stiffness tensor of each isotropic medium in equation (1) according toλijkl =
λ δij δkl + 2µ δikδjl .

The general solution of the classical equations of motion (2) in each region can be
written [9] in terms of three scalar potentialsφ, ψ andχ :

u = ∇φ + ∇ × (ezψ) + a∇ × ∇ × (ezχ). (14)

Here ez is a unit vector along thez-axis. Each potentialφ (ψ, χ ) satisfies a scalar wave
equation with propagation speed equal to the longitudinal (transverse) sound speedsl (st )
given by

slν =
√

(λν + 2µν)/ρν stν =
√

µν/ρν.

In these expressions,ν = 1 (ν = 2) corresponds to the material constant of the inner (outer)
region.

We seek the solutions of equation (2) as harmonic vibrations with frequencyω,
wavevectorqz ≡ q/a, and azimuthal numberm, confined in the vicinity of the waveguide.
Using the cylindrical coordinate system,R = (r, ϕ, z), we take the scalar potentials in the
inner region (r < a) as φ

ψ
χ

 = 1

a

 icl1Jm(klr/a)

Ct1Jm(kt r/a)

ct1Jm(kt r/a)

 eimϕ+iqz/a−iωt (15)
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and for the outer region (r > a) φ

ψ
χ

 = 1

a

 icl2Km(κlr/a)

Ct2Km(κt r/a)

ct2Km(κt r/a)

 eimϕ+iqz/a−iωt. (16)

Here the inverse wavelengthskl,t and localization lengthκl,t in the radial direction are
defined as

k2
l,t = q2 − ω2a2/s2

(l,t)1 κ2
l,t = ω2a2/s2

(l,t)2 − q2.

For definiteness, equations (15) and (16) are written under the assumption thatk2
l,t , κ

2
l,t > 0

which corresponds to the case of confined acoustic vibrations. Other possible cases are
treated formally in the same fashion using analytical properties of Bessel’s functions, and
are discussed in the appendix.

Substituting equations (15) and (16) into equation (14), we find the implicit form of the
displacement vector:

u(r, ϕ, z, t) = u(r)eimϕ+iqz/a−iωt (17)

where inside the waveguide (r < a)

−iur(r) = cl1klJ
′
m(klr/a) + Ct1m

a

r
Jm(kt r/a) + ct1qktJ

′
m(kt r/a)

−uϕ(r) = cl1m
a

r
Jm(klr/a) + Ct1ktJ

′
m(kt r/a) + ct1mq

a

r
Jm(kt r/a)

−uz(r) = cl1qJm(klr/a) − ct1k
2
t Jm(kt r/a)

(18)

while for r > a we have

−iur(r) = cl2κlK
′
m(κlr/a) + Ct2m

a

r
Km(κt r/a) + ct2qκtK

′
m(κt r/a)

−uϕ(r) = cl2m
a

r
Km(κlr/a) + Ct2κtK

′
m(κt r/a) + ct2mq

a

r
Km(κt r/a)

−uz(r) = cl2qKm(κlr/a) + ct2κ
2
t Km(κt r/a).

(19)

Applying standard boundary conditions (continuity of the displacement and normal
components of the stress tensor at the boundaryr = a) gives the following 6×6 characteristic
equation for the acoustic vibrations of a buried cylindrical fibre:[

U1 −U2

µ1F1 −µ2F2

] [
C1

C2

]
= 0 (20)

whereCν = [clν, Ctν, ctν ]T; displacement matrices atr = a are given by

Uν =


Lν mtν qTν

−mlν −Tν −mqtν

−qlν 0 k2
νt tν

 (21)

and matricesFν , related to the elastic forces at the interface, are equal to

F =


−2qLν −mqtν (k2

νt − q2)Tν

2m(lν − Lν) (k2
νt − 2m2)tν + 2Tν 2mq(tν − Tν)

(2m2 + q2 − k2
νl)lν − 2Lν 2m(Tν − tν) 2q[(m2 − k2

νt )tν − Tν ]

 . (22)
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Herek2
1(l,t) = k2

l,t , k2
2(l,t) = −κ2

l,t , and

l1 = Jm(kl) L1 = klJ
′
m(kl) t1 = Jm(kt ) T1 = ktJ

′
m(kt )

l2 = Km(κl) L2 = κlK
′
m(κl) t2 = Km(κt ) T2 = κtK

′
m(κt ).

Equations (20)–(22) define the dispersion law and eigenmodes of elastic vibrations in a
buried cylindrical waveguide for arbitrary azimuthal numberm.

Finally, taking into account the notation introduced above, we can rewrite equation (9)
for the displacement operator as

û(R, t) =
∑
mn,q

√
h̄

2ωmn,qL
[
wmn,q(r)b̂mn,q + w∗

mn,−q(r)b̂
†
mn,−q

]
eimϕ+iqz/a. (23)

Here, the discrete quantum numbern enumerates phonon modes with the samem and q,
and the normal modesw can be represented conveniently in the following form:

wmn,q(r) ≡ wmn,q(r)e
imϕ = u(r)eimϕ/

√
πa2N (24)

where the normalization constantN must be determined from the condition of equation
(10).

Below we consider in detail the important case of axisymmetric (m = 0) vibrations in
a cylindrical waveguide.

3.2. Axisymmetric vibrations

In case of axisymmetric vibrations,m = 0, the 6×6 determinant corresponding to equation
(20) decouples into 2× 2 and 6× 6 blocks, specifying axisymmetrictorsional and radial–
axial modes. Below we present the expressions for these two types of axisymmetric normal
modeswq(r), which appear in equation (9) for the displacement operator of a cylindrical
waveguide.

3.2.1. Torsional modes.According to equations (18)–(22), the dispersion relation for the
torsional vibrations is specified by the following transcendental equation:

µ1ktJ2(kt )/J1(kt ) = µ2κtK2(κt )/K1(κt ) (25)

while the envelope function is given bywr = wz = 0 and

wϕ = 1√
πa2Nϕ

{
K1(κt )J1(kt r/a) r < a

J1(kt )K1(κt r/a) r > a.
(26)

Here Nϕ is the dimensionless normalization constant. Using the notation thatJm(l,t) ≡
Jm(kl,t ) andKm(l,t) ≡ Km(κl,t ), we find from the normalization condition (10)

Nϕ = ρ1K
2
1t (J

2
1t − J0t J2t ) + ρ2J

2
1t (K0tK2t − K2

1t ). (27)

3.2.2. Radial–axial modes.For radial–axial axisymmetric vibrations the normal modes are
given bywϕ = 0 and

iwr = 1√
πa2Nrz

{
cl1klJ1(klr/a) + ct1qktJ1(kt r/a) r < a

cl2κlK1(κlr/a) + ct2qκtK1(κt r/a) r > a
(28)

−wz = 1√
πa2Nrz

{
cl1qJ0(klr/a) − ct1k

2
t J0(kt r/a) r < a

cl2qK0(κlr/a) + ct2κ
2
t K0(κt r/a) r > a.

(29)
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The dispersion relation and the relationship between coefficientscνl , cνt are specified
by the following eigenequation (cf. equations (20)–(22)):

−klJ1l −qktJ1t κlK1l qκtK1t

−qJ0l k2
t J0t qK0l κ2

t K0t

2µ1qklJ1l µ2kt (q
2 − k2

t )J1t −2µ2qκlK1l −µ2κt (κ
2
t + q2)K1t

µ1[AJ0l+2klJ1l ] 2µ1qkt [J1t −ktJ0t ] −µ2[BK0l+2κlK1l ] −2µ2qκt [J1t +κtJ0t ]



×



c1l

c1t

c2l

c2t


= 0. (30)

whereA = q2 − k2
l andB = q2 + κ2

l .
The normalization constantNrz in equations (28) and (29) may be determined from the

condition (10). After some calculations, we find

Nrz = ρ1{c2
1l [q

2(J 2
0l + J 2

1l) + k2
l (J

2
1l − J0lJ2l)]

+c2
1t k

2
t [k2

t (J
2
0t + J 2

1t ) + q2(J 2
1t − J0t J2t )] − 4c1lc1t qktJ0lJ1t }

+ρ2{c2
2l [q

2(K2
1l − K2

0l) + κ2
l (K0lK2l − K2

1l)]

+c2
2t κ

2
t [κ2

t (K2
1t − K2

0t ) + q2(K0tK2t − K2
1t )] − 4c2lc2t qκtK0lK1t }

where the notation used forJm(l,t) andKm(l,t) was introduced in section 3.2.1.

3.3. The deformation potential interaction

Substituting equations (23), (24), (15), and (16) into equation (13), and taking into account
that ∇2φ = −(ω/sl)

2φ, we find

Ĥdef = −4ac

∑
mn,q

(
ωmn,q

asl

)2
√

h̄

2πωmn,qNL
[
8mn,q b̂mn,q + 8∗

mn,−q b̂
†
mn,−q

]
eimϕ+iqz/a (31)

where the scalar potential8 is given by

8mn,q =
{

icl1Jm(klr/a) r < a

icl2Km(κlr/a) r > a.
(32)

As expected, only the longitudinal component of the vibration contributes to a deformation
potential interaction.

4. Summary

In this paper we obtained the quantization rules for acoustic vibrations confined in one,
two, or all spatial dimensions and presented a general form of the deformation potential
Hamiltonian in a second-quantization representation. It should be noted that the quantization
rules do not change the dispersion relations and displacement pattern of the classical acoustic
waves in the waveguides. However, the procedure of second quantization performed
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specifies uniquely the normalization constants for phonon fields and provides the operator
representation for phonon variables. The formalism makes possible the consideration of
processes with numbers of phonons of the order of one, and should be applied for analysis
of electron–phonon interaction in mesoscopic devices.

As a specific example we considered the quantization of acoustic phonon modes in a
buried cylindrical waveguide. The expressions obtained may be used for analysis of electron
and phonon dynamics in buried quantum wires.

Acknowledgments

This work was supported by the US Army Research Office and the Office of Naval Research.

Appendix

All three scalar potentials in equation (15) for the inner region,r < a, are written in
terms of Bessel’s functionsJm, which describereal vibrations involving the whole cross-
section of the waveguide, provided thatk2

l,t > 0 (i.e. ω < s(l,t)1qz). In the opposite case,
whereω > sl,t qz, the functionsJm should be replaced by the modified Bessel functionsIm

according to the identity

Jm(−i|z|) = imIm(|z|). (A1)

This situation corresponds to (interface) evanescent vibrations, exponentially decreasing
toward the centre of the waveguide.

As for the outer region,r > a, it is characterized by the evanescent solutions (16)
in terms of MacDonald’s functionsKm. Vibrations are confined in the vicinity of the
waveguide, provided thatω < st2qz < sl2qz. The opposite case ofω > stqz can be treated
formally through the substitution

Km(−i|z|) = π

2
im+1H(1)

m (|z|). (A2)

Here the Hankel function describes the radiation of acoustic energy from the system, which
is characterized by a complex frequency spectrum.
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